
GENSCRNX 1.8

INTRODUCTION

GENSCRNX.PRG extends the control of code generated from FoxPro's
screen builder. After Generate... is selected when using the Screen
Builder, GENSCRNX first copies the .SCX database and then updates it
based on comments in the snippets and setup code. Also, GENSCRNX
places the .SPR into a memo field after its created to make possible
code changes and/or replacements after GENSCRN. The ability to
define each object into a global database called FOXSCX.DBF is
performed when a define object directive is placed in an object's
comment code. The FOXSCX.DBF contains the same structure as
FoxPro's .SCX files except has added fields for object name, field, library,
and other objects that it bases from. New screens can be created
without snippet code by simply placing a base object directive in the
comment snippet with the appropriate name. GENSCRNX updates
the .SCX before passing it to GENSCRN. Drivers can be defined in the
CONFIG.FP and screen Setup snippet code. Every driver is called once
for each record in the .SCX before GENSCRN generates code. The
driver may update the .SCX database with no limitations. Objects can be
manipulated or replaced by pure FoxPro code using a driver procedure.
GENSCRNX handles the code replacements to the .SPR. A driver may
use pre-made functions contained in GENSCRNX which handle
the .SCX record update for code replacement, template insertion, and
other .SCX update functions. A DEFINE WINDOW command can be
inserted in the .SPR between the GET/SAY fields in the Screen Layout
section.. Multiple drivers may also be selected for functions such as 3D
effects or auto insertion of push buttons (Next, Previous, Append, Delete,
etc.). GENSCRNX is entirely written in FoxPro and fully compatible with
FoxPro 2.0 and FoxPro 2.5 (all platforms). The FOXSCX library
database can be updated when referenced by FoxPro 2.0 and/or FoxPro
2.5 for MS-DOS without any conversion. FoxPro 2.5 for MS-DOS MS-
DOS applications can be built by referencing objects created with FoxPro
2.0 and vice versa. The FOXSCX.DBF database can contain records
for FoxPro 2.5 (all platform) while GENSCRNX automatically handles the
record relation between platforms.

Notes:
CONFIG.FP relates to FoxPro 2.0 and FoxPro 2.5 DOS.
CONFIG.FPW relates to FoxPro 2.5 Windows.

FEATURES

- Extended control over FoxPro's Screen Builder without changing
GENSCRN. GENSCRNX can be though of as a WHEN and VALID for
GENSCRN.

- Option for compiling the output file when generating from the Screen

Builder.

- Option for displaying the .SPR and .ERR files if an .ERR file is
generated after compiling the output file when generating from the
Screen Builder.

- Ability to store screen objects into a database library.

- Ability to retrieve screen objects from a database library with support of
multiple inheritance (expressions are separated by .AND. while
procedures are appended).

- Option to set Read level settings (OpenFiles, CloseFiles, Modal,
OutFile, etc.) from with the screens setup that override the Generate
dialog checkboxes. This allows settings to be saved with the screen
without using a project.

- Ability to insert records contained in a separate .SCX file at compile
time. All records row and column information is automatically adjusted.
This allows subforms to be inserted without copy and paste. If the
inserted screen is updated, the screen importing it can be re-generated
without change.

- Ability to insert FoxPro code in place of any screen object. This allows
a line or multiple lines of FoxPro code to be generated between GET
commands in the Screen Layout section.

- Ability to block a GET command with any IF/ENDIF statement.

- Ability to specify any SIZE clause and override the SIZE setting
defaulted by the Screen Builder.

- Ability to remove the SIZE clause from any GET command.

- Ability to create .PRG drivers that update the .SCX database at compile
time before GENSCRN is called. This allows external programs to be
created that automatically add, update, or remove code of any screen
snippet. Drivers can make function calls to many of GENSCRNX's built
in function library for parsing or insertion of .SCX information.

- Support for any expression to be evaluated at compile time using
{{<expC>}} in any snippet or field. GENSCRNX will evaluate <expC> at
compile time and replace {{<expC>}} with its result. If <expC> was an
external function and the command was placed in the Setup snippet, the
external function could act like a #INCLUDE function by returning
multiple lines of code.
 Example:
 If the following command was in the Setup snippet and assuming the
current date was 06/01/93:
 WAIT '{{DATE()}}' WINDOW NOWAIT
 the following code would be placed in the .SPR:
 WAIT '06/01/93' WINDOW NOWAIT

INSTALLATION

After unzipping GENSCRNX.ZIP, copy GENSCRNX.PRG to all existing
FoxPro 2.x directories

Change all CONFIG.FP and CONFIG.FPW files to:

_GENSCRN="<path>GENSCRNX.PRG"

MVCOUNT=512

Notes:
If MVCOUNT is already set to a number greater than 512, then do not
change it. If MVCOUNT is set to a number less than 512, then change
the number to 512. If a line containing MVCOUNT does not exist, then
create one as above.

CONFIG.FP/CONFIG.FPW OPTION SETTINGS

_GENSCRNX

Specifies program to generate .SPR file from .SCX database.

Default:
_GENSCRNX="<path>GENSCRN.PRG" in FoxPro start directory

Example:
_GENSCRNX="C:\MYDIR\MYGENSCN.PRG"

Notes:
When _GENSCRN="<pathname>\GENSCRNX.PRG", then
_GENSCRNX is used to specify which program is used to generate
screen code. If _GENSCRNX is not specified in the
CONFIG.FP/CONFIG.FPW, the default setting is GENSCRN.PRG
located in FoxPro's start-up directory.

_FOXSCX

Specifies database used for object library records.

Default:
_FOXSCX="FOXSCX.DBF" in FoxPro start directory

Example: _FOXSCX="C:\MYDIR\FOXSCX.DBF"

Notes:
It is recommended that all FoxPro 2.x CONFIG.FP/CONFIG.FPW
contain the same _FOXSCX setting.

_SCXDRV1

Specifies global driver program.

Default:
_SCXDRV1=""

_SCXDRV1 to _SCXDRV8

Specifies global driver program. The numbers 1-8 represent various
driver hooks throughout GENSCRNX while the .SCX databases is being
generated.

Example:
_SCXDRV5="C:\3DFOX\3D"

_SPRDRV1

Specifies global driver program.

Default:
_SPRDRV1=""

_SPRDRV1 to _SPRDRV6

Specifies global driver program. The numbers 1-6 represent various
driver hooks throughout GENSCRNX while the .SPR file is being
updated.

Example:
_SPRDRV1="C:\MYDIR\SPRUPD1"

GENSCRNX

Specifies GENSCRNX functions enabled (ON) or disabled (OFF).

Default:
GENSCRNX=ON

COMPSPR

Specifies auto-compilation of .SPR file. A public variable called
_COMPSPR to override the COMPSPR setting.

Default:
COMPSPR=OFF

Important:
This setting is ignored during screen building from projects.

DISPSPR

Specifies auto-display of .SPR and .ERR files if an .ERR file is exists. A
public variable called _DISPSPR to override the DISPSPR setting.

Default:
DISPSPR=OFF

Important:
DISPSPR=ON may cause a file sharing error when SHARE.EXE is
installed.

SETUP SNIPPET DIRECTIVE REFERENCE

#:SECTION 3

Used in Setup snippet (like #SECTION 1 | 2) to insert code after GETs
and before READ in the Screen Layout.

*:AUTORUN

Automatically releases screen after generation and executes generated
file. *:AUTORUN is automatically disabled if either a compiled file is not
properly generated or a compile error was detected via the
COMPSPR=ON.

*:COMPSPR

Overrides COMPSPR=OFF in CONFIG.FP/CONFIG.FPW.

New: *:DISPSPR

Overrides DISPSPR=OFF in CONFIG.FP/CONFIG.FPW.

*:SET OPENFILES ON | OFF

Open files.

Example:
*:SET OPENFILES ON

*:SET CLOSEFILES ON | OFF

Close files.

*:SET DEFWINDS ON | OFF

Define windows.

*:SET RELWINDS ON | OFF

Release windows.

*:SET READCYCLE ON | OFF

Read cycle.

*:SET MULTREADS ON | OFF

Multiple READs.

*:SET NOLOCK ON | OFF

READ nolock.

*:SET MODAL ON | OFF

Modal.

*:SET PLATONLY ON | OFF

Current platform objects only. If this setting is ON, GENSCRN will not
generate code for other platform code but GENSCRNX will still process
all platform records. Setting PLATONLY='ON' in the
CONFIG.FP/CONFIG.FPW files will cause GENSCRNX to not pre or
post process other platform records. See ADDITIONAL INFORMATION
section below for controlling this setting using a public variable.

*:SET BORDERGETS ON | OFF

Border for GETs.

*:SET ASSOCWINDS TO <window title list>

Assoc. windows list. The <window title list> is appended to Assoc.
windows list from screen or project.

Example:
*:SET ASSOCWINDS TO Calculator,Calendar

*:OUTFILE <file>

Output file name. *:OUTFILE is disabled when building screen from a
project.

Example:
*:OUTFILE TEST.PRG

*:PRG

A Setup snippet directive called *:PRG that is used to automatically
change the .SPR extension to a .PRG extension and also add the
#NOREAD PLAIN directive to the Setup snippet. The *:PRG directive
used in conjunction with screen objects with the *:INSTXT directive will
allow a .PRG file to be created that has no GETs, SAYs, or READ, while
the screen builder Object Order controls the order of the FoxPro source
code generated in the .PRG file. When building a screen from a project,
the *:PRG directive is ignored since the project expects that file specified
in the project to be generated and will abort project generation if the
project specified file is not created..

*:PJXSET

Place in the Setup snippet before the *:PRG directive or any *:SET
directive to force the project information to have priority settings when
building the screen from a project.

Example:
If the following was in the Setup snippet of a screen:

*:SET MODAL ON
*:PJXSET
*:SET READCYCLE OFF

Then if the screen was generated from the Screen Builder, the READ
would contain the clauses MODAL and CYCLE no matter what the check
box settings were set to before selecting <Generate>. If the screen was
generated from a project, the READ would contain MODAL no matter
what the settings were set to in the project but the CYCLE setting would
be set to whatever the project setting was set to.

*:BRACES

Overrides a CONFIG.FP/FPW setting of BRACES=OFF.

*:NOBRACES

Turns off the auto braces detection for GENSCRNX. By default,
GENSCRNX automatically searches all snippets for any {{<expC>}}
expressions to be evaluated. For screens with many objects, this could
result in a few seconds overhead depending on the speed of the
computer being used. Using *:NOBRACES will force GENSCRNX to
only evaluate snippets if *:EVLTXT is in the Comment snippet (or Setup
snippet for the header record). Overrides a CONFIG.FP/FPW setting of
BRACES=ON.

*:IGNOREBRACES

Ignores all {{<expC>}} expressions. *:IGNOREBRACES cam only be
declared in the Setup snippet and overrides *:BRACES and
*:NOBRACES.

*:SCNOBJ

Enables the invisible button m.scnobjn above to be generated. Although
it is generated by default, *:SCNOBJ can be used to override a
SCNOBJ=OFF setting in the CONFIG.FP/FPW files.

*:NOSCNOBJ

Disables the invisible button m.scnobjn above to be generated.
*:NOSCNOBJ can be used to override a SCNOBJ=ON setting in the
CONFIG.FP/FPW files. *:NOSCNOBJ is automatic when either the
#NOREAD directive exists in the Setup snippet or no GET objects exist
for the screen.

*:DEFLIB <library name>

Defines library name. *:DEFLIB can be used with stand alone screens
only and cannot be used with screens in a screen set.

*:INCLIB <library name>

Includes library in base object search path.

*:BASLIB <library name>

Base library objects for field name match.

*:SAVESIZE

Used with *:DEFOBJ in a library object to force the SIZE information to
be retrieved fromt he library when the object is based in a screen.

*:SAVEPICT

Used with *:DEFOBJs to force the PICTURE information to be retrieved
from the library when the object is based in a screen.

*:BASBEFORE

Used with *:DEFOBJ in a library object to force any inherited expressions
or procedures to be inserted before rather than appended after to any

screen surface code.

*:SCXDRV1 <file>

Specifies screen driver program.

*:SCXDRV1 to *:SCXDRV8

Specifies screen driver program. The numbers 1-8 represent various
driver hooks throughout GENSCRNX while the .SCX databases is being
generated.

*:SPRDRV1 <file>

Specifies screen driver program.

*:SPRDRV1 to *:SPRDRV6

Specifies screen driver program. The numbers 1-6 represent various
driver hooks throughout GENSCRNX while the .SPR file is being
updated.

*:MEMVAR

Replaces all aliases in GET name from alias.variable to m.variable. All
alias.variable names referenced in the WHEN, VALID, ERROR,
MESSAGE, RANGE LO, and RANGE HIGH snippets will be replaced
with m.variable.

*:NAME

The following example demonstrates how *:NAME affects FoxPro 2.5's
#NAME directive.

#NAME v_show

is changed to

#NAME v_showd && _DOS=.T.
#NAME v_showw && _WINDOWS=.T
#NAME v_showm && _MAC=.T.
#NAME v_showu &&_UNIX=.T.

The above changes will occur before GENSCRN is called.
Then, a function is appended to the Cleanup snippet as follows:

FUNCTION V_SHOW

DO CASE
 CASE _DOS

 RETURN V_SHOWD()
 CASE _WINDOWS
 RETURN V_SHOWW()
 CASE _MAC
 RETURN V_SHOWM()
 CASE _UNIX
 RETURN V_SHOWU()
ENDCASE
RETURN .F.

FUNCTION V_SHOWM
RETURN .F.

FUNCTION V_SHOWU
RETURN .F.

This will result in the exact same code execution as if a CASE _DOS,
CASE _WINDOWS, etc. was generated in the snippet. The only rule is
that *:NAME uses only the first 9 characters of the snippet name
specified. The 10th character is used for the platform character. Also,
any PARAMETER statement that follows the #NAME in the snippet will
be properly handled in the cross-platform function that is generated. The
only rule here is that the PARAMETER statements must be identical for
all platforms having the same #NAME definition.

*:NOGEN

Prevents GENSCRN from being called so that no .SPR file is generated.
*:NOGEN should be used with templates since templates do not need
code to be generated.

*:NOXGEN

Prevents GENSCRNX from updating .SCX database and .SPR file.

*:GENSCRNX <file>

Used to specify which program is used to generate screen code.
*:GENSCRNX overrides any _GENSCRNX in the CONFIG.FP and
CONFIG.FPW files. If both *:GENSCRNX and _GENSCRNX are
notspecified, the default setting is GENSCRN.PRG located in FoxPro's
start-up directory. *:GENSCRNX can be used to specify a modified
GENSCRN needed for a particular screen rather than changing
_GENSCRN before generating a screen.

*:NOCOMPSPR

Overrides COMPSPR=ON in CONFIG.FP/CONFIG.FPW.

*:NODISPSPR

Overrides DISPSPR=ON in CONFIG.FP/CONFIG.FPW.

*:NOWCLAUSES <clause list>

Removes a list of clauses from the DEFINE WINDOW command of a
screen. Any list of clauses can be removed (except COLOR) by listing
the name of each clause separated by a space delimiter.

Example:
Add following line in the Setup snippet to remove all FROM, TO, AT,
SIZE, FONT, and STYLE clauses will be removed from the DEFINE
WINDOW command:

*:NOWCLAUSES FROM TO AT SIZE FONT STYLE

To directly add any of the removed clauses, use GENSCRN's
#WCLAUSES directive.

Example:
Add following lines in the Setup snippet to add a custom AT <row,col>
SIZE <height,width>:

*:NOWCLAUSES AT SIZE
#WCLAUSES AT 1,1 SIZE 10,30

or

*:NOWCLAUSES AT SIZE
#WCLAUSES AT {{VPOS}},{{HPOS}} SIZE {{HEIGHT}},{{WIDTH}}

Note:
The {{<expC>}} evaluates any expression and replace its result as
source code. In the above example, the field names are referencing
the .SCX header record which contains the screen layout window data.

Example:
Add following lines in the Setup snippet to add a custom FONT
<fontface> STYLE <fontstyle>:

*:NOWCLAUSES FONT STYLE
#WCLAUSES FONT m.myfontface STYLE m.myfontstyl

*:DRVOFF <file>

Specified in the Setup snippet to disable any driver setting that is
specified in the CONFIG.FP/CONFIG.FPW. The number of *:DRVOFF
directives specified in the Setup snippet is unlimited and the files
included are retained for all screens in a screen set. If *:DRVOFF is
specifed in the Setup snippet in a screen set, then all screens following in
that screen set will inherit the *:DRVOFF for the specified driver.

Example:
If the 3D.PRG is specified in the CONFIG.FPW as
_SCXDRV5="3D.PRG", for the 3D driver to be executed globally for

every screen, then specifying *:DRVOFF 3D in the Setup snippet would
disable the 3D driver for that screen.

GENSCRNX creates comments in the Setup snippet as that include the
the following information at compile time.

Example:
* This program was preprocessed by GENSCRNX.
*--GENSCRNX 1.7
*--Screen C:\SAMPLE\CUST2.SCX
*--Project C:\SAMPLE\SAMPLE.PJX
*--FOXSCX C:\FOXPRO25\FOXSCX.DBF
*--Platform DOS
*--Time 08/25/93 20:29:46

COMMENT SNIPPET DIRECTIVE REFERENCE

*:DEFOBJ <object name>

Defines object name.

*:BASOBJ [<library name.]<object name>

Specify base object.

*:INSOBJ [<library name.]<object name>

Insert object from FOXSCX.DBF in place of screen object.

*:INSSCX <file>

Insert screen from template in place of screen object. Using *:INSSCX
with FoxPro 2.0 and FoxPro 2.5 for DOS screens work are fully
compatible for both directions.

*:FUNCTION <function name>

Automatically insert a function into the Cleanup snippet. Function needs
to be written just like a typical FoxPro UDF except that *:FUNCTION is
used instead of FUNCTION. GENSCRNX will automatically remove the
*: from *:FUNCTION. Multiple *:FUNCTION/*:ENDFNCT text blocks can
exist per Comment snippet. Also, muliptle FUNCTIONs can be definfed
between *:FUNCTION and *:ENDFNCT.

Example:
x='This text does not get placed in the Cleanup snippet;
*:FUNCTION beep1

?? CHR(7)
*:ENDFNCT
x='This text does not get placed in the Cleanup snippet'

Example:
x='This text does not get placed in the Cleanup snippet'
*:FUNCTION beep1
?? CHR(7)
FUNCTION beep2
?? CHR(7)+CHR(7)
*:ENDFNCT
x='This text does not get placed in the Cleanup snippet'

Example:
x='This text does not get placed in the Cleanup snippet'
*:FUNCTION beep1
?? CHR(7)
*:ENDFNCT
x='This text does not get placed in the Cleanup snippet'
*:FUNCTION beep2
?? CHR(7)+CHR(7)
*:ENDFNCT
x='This text does not get placed in the Cleanup snippet'

*:ENDFNCT

Place at end of code that follows *:FUNCTION to mark ending of text.
*:ENDTXT is now used with *:INSTXT and is not used with *:FUNCTION.

*:EVLTXT

By default, this directive is not needed. *:EVLTXT is used to force
evaluation of any {{<expC>}} found in any of the snippets. This directive
is only used when either *:NOBRACES is specified in the Setup snippet
or BRACES=OFF is specified in the CONFIG.FP/FPW.

*:INSTXT

Insert all preceding text in place of screen object.

*:ENDTXT

Place at end of code that follows *:INSTXT to mark ending of text.
*:ENDTXT is not required and is only used as a separator if non-
*:INSTXT text follows the code to be inserted.

*:TRNTXT <expC1> || <expC2> [|| <expN1>] [|| <expN2>]]

Transform text of *all* memo fields. The search is *not* case-sensitive.

<expC1>

The character expression that's searched for.

<expC2>
The search character expression <expC1> is replaced by the
character expression <expC2>. If <expC2> is omitted, <expC1> is
replaced with
the null string.

<expN1>
The optional numeric expression <expN1> specifies which
occurrence of <expC1> is the first to be replaced. For example, if
<expN1> is 4, replacement begins with the fourth occurrence,
counting from the left, and the first three occurrences remain
unchanged. The occurrence where replacement begins defaults to 1
if <expN1> is omitted.

<expN2>
<expN2> specifies the number of occurrences of <expC1> to
replace. If <expN2> is omitted, all occurrences of <expC1>, starting
with the occurrence specified in <expN1>, are replaced.

Note:
*:TRNTXT is mainly used with the *:BASOBJ command for data
translation of code being referenced from a library object.

*:IF <expL>

Blocks object with IF ... ENDIF statements.

*:SIZE <expC>

Replaces object SIZE clause with <expC>. <expC> can be any
character expression, including variable names or FoxPro functions.

*:NOSIZE

Removes SIZE clause from object. *:NOSIZE is ignored for EDIT
objects.

*:DEFAULT <expC>

Replaces object DEFAULT clause with <expC>. <expC> can be any
character expression, including variable names or FoxPro functions.
Push buttons, Radio buttons, and Check boxes use the value of <expC>.
Lists, invisible buttons, and spinners cannot use the *:DEFAULT
directive. All other objects use <expC> with a direct replacement. If a
character default is desired, be sure to include the quotes in the
expression. If the current object's color is set to default, then a COLOR
SCHEME <expN> or COLOR <color pair list> may be included in
<expC>.

*:PICTURE <expC>

Replaces object PICTURE clause with <expC>. <expC> can be any
character expression, including variable names or FoxPro functions.
*:PICTURE can also be used to create multi-state .BMP/.ICO pictures for
check boxes, radio buttons, and push buttons (Windows platform only).

Example:
To force a data driven PICTURE clause for a GET object using a variable
called m.mypict, place the following in the Comment snippet:

*:PICTURE m.mypict

Example:
To force a tri-state picture check box:
*:PICTURE erase01.ico,erase02.ico,clear.ico

Example:
To force a dual-state picture check box without respecifying the currently
set off mode picture:
*:PICTURE ,fax2.ico

Note:
If the first .BMP/.ICO file name in the comma separated list is left out as
in the above example, the picture current set by the screen builder will be
used as the off mode picture. This way changing the off mode picture
can be done in the screen builder without having to also change in the
Comment snippet.

*:REFRESH

Replaces object REFRESH clause with .T.. *:REFRESH will override the
refresh setting for a SAY object and can also be used to allow a picture
to be refreshed in the Read Level Show using either SHOW GETS or
SHOW GETS OFF.

Note:
Using both *:REFRESH and *:PICTURE <variable name> with a picture
from file object can allow picture fields to be refreshed at runtime. If a
transparent picture is used, any updated picture will overwrite (not erase)
the previous picture. Using an opaque picture will overwrite and erase
the previous picture but will usually have a white background when using
a gray window background. Another option if a transparent picture is
desired and when using the 3D driver for GENSCRNX (version 1.7 or
later) is to draw a box around the picture and use a *:3D <bevel width>
BOX REFRESH directive to allow the 3D box to be refreshed in the Read
Level Show using either SHOW GETS or SHOW GETS OFF.

*:CLICK <function>

Adds invisible button with a WHEN snippet that calls the mouse click
function specified. The () after the function name are only required if
parameters are passed. In the Windows platform, *:CLICK supports text,
box, and picture objects while in the MS-DOS platform, *:CLICK supports

text and box objects.

Example:
To have a function called myfnct() exectuted from a mouse click on the
object, place the following in the Comment snippet:

*:CLICK myfnct

*:DELETE

Delete screen object at compile time. Use *:DELETE for objects that
need to appear while using the Screen Builder but not in the .SPR file at
run-time.

*:DELOBJ

Delete screen object at compile time after preprocessing is complete.
Use *:DELOBJ for objects that need to reside in the .SCX database
during preprocessing but not in the .SPR file at run-time.

PROCEDURE SNIPPET DIRECTIVE REFERENCE

#:INSERT <file>

Screen generator directive inserts the contents of <file> into generated
screen code. Not only does GENSCRNX support the #INSERT directive
for FoxPro 2.0, but the #:INSERT directive performs the same operation
as FoxPro 2.5's #INSERT except it is much faster when inserting large
files.

 FILE GENSCRN GENSCRNX
 SIZE #INSERT #:INSERT

 2K 3.215 2.938
 135K 178.717 3.475
 330K 970.478 6.630
 --
 Time is in seconds using 486-50DX

When using GENSCRNX, use #:INSERT instead of #INSERT for better
performance.

#:INSERTTOP <file>

Inserts file at top of .SPR code before DO CASE of cross-platform block.
If #:INSERTTOP <file> appears more than once due to cross-platform
snippets containing the same code, the <file> will only be inserted into
the .SPR once. This allows header files containing #DEFINE directives

to be inserted once per .SPR file instead of one per platform inside the
DO CASE block.

SNIPPET COMMAND REFERENCE

{{<expC>}}

Text surrounded by double braces performs the EVALUATION of <expC>
at compile time and returns the value in string form. {{<expC>}} is
replaced with the string of EVALUATE(<expC>). <expC> can be any
type (character, numeric, date, logical, etc.) and {{<expC>}} will always
return the result in character form.

Example:
If the following command was in the Setup snippet and assuming the
current date was 06/01/93:

WAIT '{{DATE()}}' WINDOW NOWAIT

the following code would be placed in the .SPR:

WAIT '06/01/93' WINDOW NOWAIT

If the following command was in the Valid snippet:

DEFINE POPUP pop_test FROM {{VPOS+HEIGHT}},{{HPOS-1}};
 TO {{VPOS+HEIGHT+7}},{{HPOS+WIDTH}};
 PROMPT FIELD items.item

and VPOS=5, HPOS=10, WIDTH=8, HEIGHT=1 in the .SCX database,
then the following code would result in the Valid snippet of that object in
the .SPR:

DEFINE POPUP pop_test FROM 6,9;
 TO 13,18;
 PROMPT FIELD items.item

{{&.<expC>}}

Text surrounded by double braces with a &. immediately after the open
braces performs the macro substitution of <expC> at compile time and
returns a null value in string form. {{<expC>}} is replaced with a null
string. <expC> can be any FoxPro command that can be executed
within a macro substitution string.

Example:
If the following command was in the Setup snippet and assuming the
current date was 06/01/93:

{{& WAIT '{{DATE()}}' WINDOW NOWAIT}}

the following WAIT window would appear at compile time of the screen:

06/01/93

If the following command was in the Setup snippet:

{{&.DO MYPROG}}

then a program called MYPROG would be executed as a subroutine at
compile time of the screen. If the program was to return a character
string for code insertion, then {{MYPROG()}} would have been used.

{{< <file> }}
Insert a file at compile time. The < that follows the open braces is the
command that evaluates the contents of a file and inserts the file at that
location. {{< <file> }} can be included in the Comment snippet and the
file inserted can contain other GENSCRNX directives and also may
contain any {{<expC>}} expressions to be evaluated.

Example:
If the following command was in the Comment snippet of a GET object:

{{<PSWDCHK.PRG}}

and PSWDCHK.PRG contained the following lines:

*:IF m.password>=5

then the resulting code in the .SPR would be:

IF m.password>=5
 @ row,col GET expr
ENDIF

{{@ <expC> }}

Retrieve a directive at compile time. The @ that follows the open braces
is the command that performs a wordsearch() operation in the Comment
or Setup snippet searching for the directive specified by <expC>. {{@
<expC> }} can be included in the Comment snippet and the file inserted
can contain other GENSCRNX directives and also may contain any
{{<expC>}} expressions to be evaluated.

Example:
If the following command was in the Valid snippet of a GET object that
had a *:IF m.p>5 in the Comment snippet:

WAIT 'IF: {{@*:IF}}' WINDOW NOWAIT

then the resulting code in the .SPR would be:

WAIT 'IF: m.p>5' WINDOW NOWAIT

Example:

If the following command was in the Comment snippet of an object:

{{Button1::@*:IF}}

then the object would use the *:IF directive specifed in an object
containing *:DEFOBJ Button1 in the Comment snippet.

Example:
If the following command was in the Setup snippet of an object:

*:SCXDRV5 3D
:ALL3D {{MAIN.All3D_Setting::@:ALL3D}}

while a library MAIN contains an object called All3D_Setting that
contained *:ALL3D 4 in the Setup snippet then the 3D driver would use a
shadow of 4 pixels as the default for all 3D objects. The Setup snippet
would result in the following:

*:SCXDRV5 3D
*:ALL3D 4

The above technique can be used to control default settings in a globally
to have muliptle screens use the same directive settings.

*:METHOD

Place at start of code to mark beginning of method code.

*:ENDMTHD

Place at end of the code that follows *:METHOD to mark ending of text.

{{ <expC1> :: [<expC2>] [:: <expC3>] }}

Insert code from a screen or library object. <expC1> is the library.object
name just as in *:DEFOBJ, *:BASOBJ, etc. Note if the library name is
not included, the object is searched for specified by the *:INCLIB and
*:BASLIB directives in the Setup snippet. Also, if a matching object is
defined via the *:DEFOBJ directive on the surface screen, that object will
have proirity over any matching library objects. <expC2> is the string to
be evaluated. After the .SCX record is matched, any string can be
evaluated (ex. 'VALID' to return the VALID snippet). If <expC2> is null,
the COMMENT contents will be returned. <expC3> is the option method
name. If <expC3> is included, the text block specified by the matching
method defined by *:METHOD <name> ... *:ENDMTHD is returned.

Example:
Suppose the following code is placed in the WHEN snippet of an object
used for entering a Phone number and *:DEFOBJ Get_Phone was
placed in the Comment snippet to label the object:

*:METHOD Check_MDOWN
IF .NOT.MDOWN()

 RETURN .F.
ENDIF
*:ENDMTHD
*:METHOD Check_EditMode
IF .NOT.m.editmode
 RETURN .F.
ENDIF
*:ENDMTHD

Suppose you wanted the WHEN snippet of another object to contain the
code used to check for the mouse being pressed but not for the edit
mode status. Instead of using the copy and paste method, place the
following line of code in the WHEN snippet:

{{Get_Phone::WHEN::Check_MDOWN}}

then the resulting code in the WHEN snippet would be:

IF .NOT.MDOWN()
 RETURN .F.
ENDIF

Suppose you wanted the WHEN snippet of another object to contain all
code used in the Phone object's WHEN snippet but wanted a beep to
occur before the check. Instead of using the copy and paste method,
place the following line of code in the WHEN snippet:

?? CHR(7)
{{Get_Phone::WHEN}}

then the resulting code in the WHEN snippet would be:

?? CHR(7)
IF .NOT.MDOWN()
 RETURN .F.
ENDIF
IF .NOT.m.editmode
 RETURN .F.
ENDIF

Note:
The expression {{Get_Phone::}} is identical to
{{Get_Phone::COMMENT}} since the Comment snippet is the default.

Note:
Complex expressions can be used like the following:
{{Get_Phone::WHEN+VALID}} which would insert both the WHEN and
VALID snippets of the Get_Phone object.

DRIVER INFORMATION

Driver programs are specified either in the CONFIG.FP/CONFIG.FPW

files by defining:

_SCXDRV3="<pathname>\[<file>]".

Driver programs can also be specified a screen Setup snippet by
defining:

*:SCXDRV3 <pathname>\[<file>].

*:SCXDRV1 is used before any GENSCRNX compilation. It can be used
as a #INCLUDE to add any GENSCRN or GENSCRNX directives.
Another method of obtaining a #INCLUDE type function is the use the
braces ({{<expC>}}) when <expC> contains an external function. The
character string returned from the function will replace the {{<expC>}}
directly. For example, if the Setup snippet contained the following line:

{{inc_test()}}

and the external function inc_test() return a character string of
#NOREAD, then the {{inc_test()}} line would be directly replaced by the
#NOREAD command. Also, the returned character string may contain a
carriage return and line feeds (CHR(13)+CHR(10)) to separate lines
when multiple lines are needed for insertion. Refer to the {{<expC>}}
definition supplied with GENSCRNX for further information.
Notes:
If the <file> parameter of a driver directive does not include a file
extension, the following extensions are checked in this order:
.EXE, .APP, .PRG, .FXP

The n in SCXDRVn represents the hook number from GENSCRNX.
GENSCRNX has 8 different places during the compiling loop that can
call out to drivers. The most common one to use is #3. You can have
infinite drivers for #3:

Example:
*:SCXDRV3 <driver1>
*:SCXDRV3 <driver2>

The order they are listed is the order they are called. Hook #1 is before
compilation (like #INCLUDE), hook #2 is the first in the first compile loop,
hook #3 is the first in each compile loop, #7 is after preprocessing
(except *:FUNCTION and the insertion of _ScnObjn) is complete, and #8
is after all preprocessing is complete.

Important:
Only one driver can be specified in the CONFIG.FP/CONFIG.FPW files.
If more than one driver is specified in the Setup snippet, the drivers are
called in the order they are listed. Drivers specified in the
CONFIG.FP/CONFIG.FPW are called before the drivers specified in the
Setup snippet.

USING GENSCRNX AS TRANSPORTX

In the CONFIG.FP/FPW file, you can place the following:

_TRANSPRT="<path>GENSCRNX.PRG"
_TRNDRV1="<path><prg 1>"
_TRNDRV2="<path><prg 2>"

What happens here is that whenever the FoxPro calls the transporter, the
following occurs:

1) GENSCRNX gets called.
2) If prg 1 is defined as above, prg 1 is called.
3) Based on the return value of prg 1, GENSCRNX will either return an
open as is, cancel, or call TRANSPRT.PRG.
4) Upon return from TRANSPRT.PRG, if prg 2 is defined as above, prg 2
is called.

Notes:

<prg 1> can be used as a custom control program to determine if the
transporter needs to be called or any preprocessing needs to occur to
the .SCX before TRANSPRT.PRG is called.

<prg 2> can be used to updated the .SCX after TRANSPRT.PRG is
complete to override any unwanted defaults such as fonts, row/column,
screen color, or .SCX header information.

ADDITIONAL INFORMATION

For performance optimization, GENSCRNX only pre and post processes
a screen if the *: or {{ characters exist somewhere in either the Setup
snippet or at least one of the Comment snippets. The first screen a
screen set of more than one screen must have either a GENSCRNX
directive or at least a simple *: in the Setup snippet of the first screen for
GENSCRNX to properly preprocess the screen set.

All *: directives used for GENSCRNX must be specified starting in
column one of the snippet. Do not indent the *: directives with spaces or
tabs.

GENSCRNX automatically creates two null invisible button at row,col 0,0
as the first and last GET in the Screen Layout. Each screen of a screen
set will have two null invisible buttons with the name corresponding to the
screen set. Since the invisible button's WHEN is set to .F., the objects
are null objects and have no effect on the generated screen. The
purpose of this is to allow generic reference to the first or last GET object
in any screen of a screen set. For example in a screen set with one
screen, the first GET would be m.scnobj1 and the last GET would be
m.scnend1.

Example:
_CUROBJ=OBJNUM('m.scnobj1')

Example: The first GET of the first screen of a screen set would have an
invisible button at 0,0 called m.scnobj1 while the second screen of a
screen set would have an invisible button called m.scnobj2.

When using the Standard version of FoxPro for MS-DOS, the .SPR file
size must be less than 64K.

If a public variable called _GENSCRNX is set to OFF, GENSCRNX with
pass the .SCX directly to GENSCRN and all GENSCRNX directives and
commands will be ignored. GENSCRNX can also be specified in the
CONFIG.FP/CONFIG.FPW files and changed without re-entering
FoxPro.

If a public variable called _PLATONLY is set to ON, GENSCRNX and
GENSCRN will only generate code for the current running platform.
PLATONLY can also be specified in the CONFIG.FP/CONFIG.FPW files
and changed without re-entering FoxPro. _PLATONLY='ON' is useful
during development when cross-platform code generation is not required
for screens until development is complete.

COPYRIGHT NOTICE

Compressed file: GENSCRNX.ZIP
System: GenScrnX
Author: Ken R. Levy
Company: Jet Propulsion Laboratory
Copyright: None (Public Domain)

All source code and documentation contained in GENSCRNX.ZIP was
developed at the Jet Propulsion Laboratory in Pasadena, Calif. and has
been placed into the public domain. You may use, modify, copy,
distribute, and demonstrate any source code, example programs, or
documentation contained in GENSCRNX.ZIP freely without copyright
protection. All files contained in GENSCRNX.ZIP are provided 'as is'
without warranty of any kind. In no event shall its authors, contributors,
or distributors be liable for any damages.

COMMENTS/SUGGESTIONS/PROBLEMS/QUESTIONS

Please use CompuServe's FoxForum (section 3rd Party Products)
directed to:

Ken Levy 76350,2610
